
An Incremental Anytime Algorithm for Multi-Objective Query Optimization
Immanuel Trummer and Christoph Koch
{immanuel.trummer, christoph.koch}@epfl.ch

Context
In multi-objective query optimization, we
search the query plan that represents the best
tradeoff between different cost metrics such
as execution time, monetary fees, energy con-
sumption, or result precision.

The best tradeoff is defined by user preferences.
Prior approaches let users formalize their pref-
erences before optimization starts. This is how-
ever tedious and error-prone.

Goals
Users do not specify their preferences before-
hand but rather pick their preferred cost trade-
off from a visualization of available tradeoffs.

Query optimization feels similar to using a ho-
tel booking Web site: Users dynamically adapt
their constraints based on a continuously refin-
ing visualization of optimal cost tradeoffs.

Example Session
We execute query plans in the Cloud and com-
pare plans based on their execution time and
their monetary execution fees.

After entering a query, the user obtains quickly
a coarse-grained approximation of optimal cost
tradeoffs within the default cost bounds:

Monetary fees

Ti
m

e Plan cost
Cost bounds

Without user interaction, the approximation is
continuously refined:

Monetary fees

Ti
m

e Plan cost
Cost bounds

The user may adapt the bounds at any time and
the visualization is quickly updated:

Monetary fees

Ti
m

e Plan cost
Old bounds
New bounds

Optimization ends once the user selects his pre-
ferred cost tradeoff.

Anytime Property
Calculating a fine-grained approximation of the
Pareto frontier takes a lot of time. To allow for a
responsive user interface, our optimizer calcu-
lates a series of approximations with increasing
resolution. We call this the anytime property.

Incrementality
The optimizer is invoked many times for the
same query, for different resolution levels and
cost bounds. We must avoid regenerating the
same query plans over and over again. Our op-
timizer is incremental: it generates plans only
once and discards them only if they cannot be
relevant for future optimizer invocations.

Overview of Approach
Interactive Optimizer

Anytime Loop Plan Generator

User

Approximate
Pareto Frontier

Refine
Approximation

User
Input?

None Bound
Change

Tradeoff
Selection

Return Plan

Candidate Plans

Retrieve
Candidates

Prune
Candidates

Generate
New Plans

Result Plans

Visualize
Pareto Frontier

Select
Cost Tradeoff

Explanation. After entering a query, the USER
sees a continuously refining approximation of
the query plan Pareto frontier. The user can set
cost bounds to focus optimization on interesting
segments of the Pareto frontier. Finally, the user
selects the preferred cost tradeoff from the Pareto
frontier.

Internally, the ANYTIME LOOP controls the in-
teraction with the user and the resolution refine-
ments. It uses the PLAN GENERATOR as a sub-
function to refine the plan Pareto frontier approx-
imation by generating new plans. The plan gen-
erator is incremental and indexes plans as candi-
dates that might become useful in the future.

Pruning
Plan to prune

Exceeds
bounds?

Candidate after
cost bound

change

Cost too
similar?

Candidate after
resolution
refinement

Insert as
result plan

Yes

Yes

No

No

Explanation. We first check whether the
pruned plan exceeds the current cost bounds.
If yes then it is indexed as candidate to recon-
sider once the cost bounds change. If no then
we check whether the cost of another plan is too
similar to the pruned plan. If yes then we index
the pruned plan as candidate to reconsider once
the resolution is refined. If no then the pruned
plan is inserted as result plan.

Plan Life Cycle

Generated Indexed as
Candidate

Result
Plan Discarded

Explanation. After generation, plans are poten-
tially re-indexed multiple times as candidates
before either being discarded or inserted.

Experimental Setup
Goal. We compare our incremental anytime al-
gorithm against baselines on TPC-H queries.

Metric. We measure optimization time when
generating a sequence of Pareto frontiers with
increasing resolution.

Algorithms. InAn is our incremental anytime
algorithm. Nin is a non-incremental algorithm.
NinNan is a non-incremental non-anytime al-
gorithm.

Implementation. All algorithms implemented
as extensions of the Postgres optimizer.

Experimental Results (Extract)
We vary the number of resolution levels and
measure optimization time in seconds per in-
vocation for three objectives and five joins:

InAn
Nin

NinNan

1 Resolution Level
InAn 1.2× slower
than baselines.

10

8

8

InAn
Nin

NinNan

5 Resolution Levels
InAn 3× faster
than baselines.

2

6

8

InAn
Nin

NinNan

20 Resolution Levels
InAn 7× faster
than baselines.

0.9

6

8

Only InAn can decompose optimization into
incremental steps. The performance gap be-
tween InAn and the baselines grows for higher
target resolutions:

InAn
Nin

NinNan

20 Resolution Levels
InAn 9× faster
than baselines.

1.2

11

44


